

Grontmij Advies & Techniek bv Vestiging Zuid-Holland Coenecoop 55 Postbus 190 2740 AD Waddinxveen Telefoon (0182) 625500 Telefax (0182) 625510

Nagel GmbH Co Schiffahrts & Handelsgesellschaft Mannheim t.a.v. dr. iur. Rolf Nagel Talstraße 74 68259 MANNHEIM DEUTSCHLAND

Plaats en datum

Briefnummer

Kenmerk

Waddinxveen, 8 september 2000

99014817 - DeGr/YV

PN 22.0005.9

Betreft

Rapport Yali-bims

Divisie Advies & Techniek Handelsregister Utrecht nr. 30129769

Geachte heer Nagel,

Conform uw verzoek doen wij u hierbij in vijfvoud de Engelse vertaling toekomen van het u eerder toegezonden rapport inzake Yali-bims.

Meerdere exemplaren zijn uiteraard, na uw bericht, te produceren en toe toezenden.

Wij vertrouwen erop u hiermede van dienst te zijn geweest.

Hoogachtend, Grontmij Advies & Techniek by Vestiging Zuid-Holland

I.B. de Groote

Rayonleider Rijnmond

Bijlage: Rapport in vijfvoud.

Sample inspection Building Materials

Examination of a depot Yali-pumice in conformity with the Bouwstoffenbesluit (Building Materials Decree)

Nagel G.mbH&Co. Schiffahrts & Handelsgesellschaft Manheim Talstrabe 74 68259 Mannheim-Feudenheim

Grontmij Advies & Techniek bv Vestiging Zuid-Holland Waddinxveen, 5 September 2000

Contents

1	Introduction	
2		
	Sampling	4
2.		4
2.	2 Sampling	4
3	Laboratory examination	5
3.	1 Methods of examination	5
3.		
3.:		
3.4		7
	. Troopies of analysis as coming son	
4	Discussion and recommendation	0
4.		0
4.2		
4.3	3 Batch tests	8
_		
5	Conclusion	
	Justification	10
	Appendix 1: Location of the de depot	
	Appendix 2: Sampling forms	
	Appendix 3: Analysis results building material	
	Appendix 4: Analysis results "soil"	
	Appendix 5: Sampling certificate	• • • • • • • • • • • • • • • • • • • •

1 Introduction

Grontmij Verkeer & Infrastructuur (Grontmij Traffic and Infrastructure Dept.) has received the order from Nagel G.mbH & Co. Schiffahrts & Handelsgesellschaft Mannheim to sample and to analyse a depot of pumice (Yali-pumice 0/16) in conformity with the Bouwstoffenbesluit (Building Materials Decree). The depot is also sampled and analysed as "clean soil". The Yali-pumices are originating from Greece where they are extracted on the island Yali by the mining company Mining and Quarrying Co. In order of Nagel G.mbH & Co. Schiffahrts & Handelsgesellschaft Mannheim the pumices are transported to Rotterdam by ship. During the extracting and the transport the pumices are turned over a number of times. For this reason it is assumed that the pumices in the depot are relatively homogeneous. In this report the sampling, the analysing results and the testing with regards to the Building Materials Decree are described.

2 Sampling

2.1 Location of the depot

The depot is situated on the ground of E.P.Shipping & Trading B.V. at the Quebecstreet at Rotterdam. At the time of the sampling the depot contained appr. 7000 tons of building material and had a size of appr. 42 x 21 x 7 and 13 x 21 x 3.5 meters.

2.2 Sampling

The sampling is executed on Monday 8 May 2000. The sampling is based on the user's protocol as described in the execution regulation of the Building Materials Decree, and the VKB-protocol "Sampling of non-shaped building materials from static batches on behalf of batch tests". On basis of this protocol 12 sampling points are determined at random and set out in a x-, y- and z- coordinate. On the sampling points that were within reach with the shovel, the pumice was, preceding to the sampling, excavated up to the calculated depth. On the places that were not able to reach with the shovel, the z-coordinate is eventually adjusted to the depth that was able to sample by hand. Because the pumices are relatively homogeneous (see introduction) this has no consequences for the result of the examination.

After the sampling the 12 picks are joined, by way of random numbers, up to 2 mixed samples. The mixed samples are packed in synthetic bags and transported to the road construction laboratory of Grontmij at Zeist.

Besides of the sampling for building materials, a "soil" sampling is executed. At this 50 picks of appr. 200 grams are taken, spread over the depot area. The sampling depth was here maximum 10 centimeters. The 50 picks are divided at random over an A- and a B-mixed sample and packed in synthetic and transported to the laboratory.

3 Laboratory examination

3.1 Methods of examination

The samples for the building materials examination are offered for analysing to the analytical laboratory (Iwaco). The samples are analysed according to the full analysis package as described in appendix 2 of the Building Materials Decree. The analyses are performed under AP04-accrediting. The standards used hereto are mentioned in appendix 4.

The samples taken in behalf of the analyses as being soil, are also offered to the analytical laboratory (Alcontrol). As analysis package the standard package for the analysis of clean soil is selected here. Hereto chloride testing is added because from previous examination it appeared that this is a critical material in Yali-pumices.

3.2 Results and testing on leaching

In table 3.1 the results of the leaching examination is presented. In this the average results of both samples are presented. The results of the individual samples are included in appendix 4.

As a first testing stage the results of both analyses are compared with each other. The difference in result between both mixed samples should not be more than a factor of 2.1. Because this was not the case, the testing is continued.

In order to be able to test the result, this is converted to immission during 100 years as is described in the Building Materials Decree. At this there is started from category 1 building material and an application height of maximum 0.5 meter. At parameters at which the analysis result is under the detection limit, the detection limit is kept. At the conversion a surety factor of 1.37 is used in accordance with the user's protocol and based on 6 picks and 2 analysis samples.

In table 3.1, at the immission to be tested, for a large number of parameters "nil" is indicated. At the related parameters the analysis result is lower than the "standard value" that is deducted at the calculation, from the analysis result. From the table it only appears that chloride is significantly leaching and a testable value can be calculated. For chloride, in the Building Materials Decree a leaching standard of 30,000 mg/m3 is entered. For an application like category 1 building material however a standard of 87,000 mg/m2 is applying. For this reason the batch Yali-pumices is also complying on basis of this examination for chloride as category 1 building material, at an application height of maximum 0.5 meter.

Table 3.1 Results and testing for leaching

1 abic 3.1	Kesujus and testing	, TOT TEACHING	
Parameter	Analysis result	Calculated immission at an	Testing value immission
	average	application height of 0.5 m	(mg/m2 in 100 years)
	(mg/kg d.s.)	(mg/m2 in 100 years)	2 22 2
antimony	< 0,009	nil	39
arsenic	< 0,2	nil	435
barium	< 0,1	nil	6300
cadmium	< 0,001	nil	12
chromium	0,022	nil	1500
cobalt	< 0,03	nil	300
copper	< 0,02	nil	540
mercury	< 0,0003	nil	4,5
lead	< 0,05	nil	1275
molybdenum	< 0,03	nil	150
nickel	< 0,05	nil	525
selenium	< 0,009	nil	15
tin	< 0,03	nil	300
vanadium	< 0,02	nil	2400
zinc	< 0,05	nil	2100
fluoride	0,845	nil	14.000 1)
bromide	0,76	nil	300
chloride	262	32.486	87.000 2)
sulphate	30	nil	100.000 2)

- 1) leaching in 1 year
- 2) leaching in 1 year as category 1 building material

Results and testing regarding composition

In the table as below the results of the composition examination are given. Also at the testing of the composition, as a first step the difference in result between both mixed samples is compared. At this it appears that the difference is not more than a factor of 2.1

Table 3.2 Results and testing of composition

Parameter	Analysis result	Testing value
	average	(mg/kg d.s.)
	(mg/kg d.s.)	
benzene	< 0,05	1,25
ethyl benzene	< 0,05	1,25
toluene	< 0,05	1,25
xylenes 1)	< 0,05	1,25
phenol	0,081	1,25
naphtalene	< 0,01	5
anthracene	< 0,01	20
fenantrene	0,03	10
fluoranthene	0,05	35
benzo(a)anthtracene	0,03	10
chrysene	0,03	50
benzo(a)pyrene	0,02	10
benzo(ghi)perylene	0,02	50
benzo(k)fluorantene	0,02	50
indeno(1,2,3-cd)pyrene	< 0,1	50
PAK (polycyclic aromatic	0,19	75
hydrocarbon) (10-VROM) 1)		
PCB's (polychlorobiphenyl) 1)	< 0,009	0,5
EOCl	< 0,1	3
chlorine containing pesticides		
1)	< 0,024	0,5
non chlorine containing		
pesticides 1)	< 0,01	0,5
mineral oil	< 20	500
1) summation		

At a number of materials in table 3.2 only the result of the "summation" is mentioned because this is tested. In the table the average results are included, multiplied with a surety factor of 1.37. The results of both mixed samples are mentioned in appendix 4.

From table 3.2 it appears that the contents of examined materials in the sample are below or near the detection limit. By this the contents of the examined materials are widely complying with the testing values of the Building Materials Decree and application of the batch Yali-pumices is allowed.

3.4 Results of analysis as being soil

In the table below the results are mentioned of the examination of Yali-pumices as being soil. The results of the 2 mixed samples are averaged. The testing value for clean soil from the Building Materials Decree (appendix 1) is corrected for the examined materials for the content of organic material and lutum.

Table 3.3 Results and testing as "soil"

Table 3.3 Result	rs and testing as "soil"	
Parameter	Analysis result	Testing value appendix 1 BMD after
	average	correction lutum and organic material
	(mg/kg d.s.)	(mg/kg d.s.)
arsenic	< 4	18,2
cadmium	<0,4	0,5
chromium	< 0,15	57,8
copper	6,0	19,8
mercury	< 0,05	0,2
lead	13	58,0
nickel	6,0	13,9
zinc	8,7	67,9
PAK (polycyclic	0,1	1,0
aromatic hydrocarbon)		
EOX	0,11	0,12
mineral oil	< 20	20,5
chloride	560	200
organic material (%	4,1	not applying
mm)		11-76
lutum (% mm)	3,9	not applying

From table 3.3 it appears that the Yali-pumices do comply with the requirements for clean soil with exception of the content of chloride. The content of chloride exceeds the standard by which this batch of Yali-pumices should not be considered as clean soil.

4 Discussion and recommendation

4.1 Difference in chlorides content

A notable difference between the sampling and analysis of the Yali-pumices as building material or as soil is the content of chloride (see table 4.1). One might assume that the leaching test and the content determination for chloride give an identical result. If no analysing mistake is made, so the difference is to be traced back to the sampling. Besides of the difference in size and number of the random picks between both methods, there is a difference in maximum depth at which the picks are taken. The sampling of the Yali-pumices as building material is taken at maximum 40 centimeters from the surface. This with the exception of 2 samples at which the abovelaying pumices are removed with a shovel. These samples are taken at a depth of 1.5 meters. The picks for the sampling as soil are taken at a depth of maximum 10 centimeters.

Table 4.1	Difference in chlorides content		
Sampling	Analysis	Average content (mg/kg d.s.)	

		8
As building material	Leaching test	262
As soil	Content determination	560

The most obvious explanation for the difference in chlorides content is the depth at which the sampling has taken place. Possibly the chloride was especially present on the surface of the Yali-pumice. If this is true, this applies for periods in which it is raining little, and at which the batch of Yali-pumice lays in the depot for a longer time (chloride leaches fast).

4.2 Critical materials

After this round of sampling it is clear to the Grontmij that only chloride is a critical material. For this also see the preceding testing report of February 2000 (doc.nr. V&I-99013106.doc/sb/bms). In both examinations all examined materials of the whole series as mentioned in appendix 2 of the Building Materials Decree are below or near the detection limit. Only chloride is leaching in a significant value by which the Yali-pumice is not to be classified for the time being in a same quality as "clean soil". Both examined batches do comply with the requirements as set for category 1 building material (the cleanest building material).

4.3 Batch tests

It is recommended that the Yali-pumice is to be sampled directly after the unloading from the ship, by a certified institute according to the Building Materials Decree and to examine only for the critical material chloride. Because of the homogeneous composition and the clean producing area, the risk that a batch of Yali-pumices is approved wrongfully, is small. As an extra security it is recommended to execute a complete examination annually, as described in this report.

5 Conclusion

The examined depot of Yali-pumices is, on basis of the sampling and analysis in conformity with AP04, complying as a non-shaped category 1 building material at an application height of maximum 0.5 meters.

The sample Yali-pumices is examined for the standard series of materials as mentioned in the Building Materials Decree. With exception of chloride all contents and leaching values have values below or near the detection limit (lowest value that can be determined with the applied analysing methods). For this reason only chloride is considered as a critical material.

Justification

Title

: Sample inspection Yali pumices

Examination of a depot Yali-pumices in conformity

with the Building Materials Decree

(bouwstoffenbesluit)

Clients

: Nagel G.mbH & Co. Schiffahrts &

Handelsgesellschaft Mannheim

Issued by

: Grontmij Verkeer & Infrastructuur

Place and date

: Waddinxveen, 5 september 2000

P.N.

: 22.8862.1

Doc.nr.

99014259 - SB/LU

Status and version

: D1

Number of pages

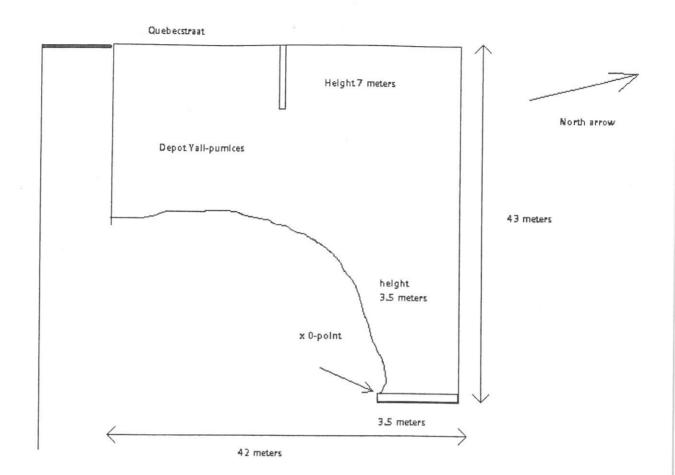
: 10

Author

: S. van den Berg

Checked

J. van der Goes


Approved

: S. van den Berg

Information

: (+31) 30 22 07 809

Appendix 1: Location of the de depot

Appendix 2: Sampling forms

Sampling of non-shaped building materials from static batches in behalf of batch testing $$VKB\mbox{-}A\mbox{-}201$$

Sampling schedule

General

General	
Project	Examination Yali-pumices
Number	
Project leader	
Phone	31 (0)30 220 78 09
Sampler	
Client	
Contact	
Contact on location	
Competent authority	n.a.
Contact	n.a.
Building material	pumices
Producer	Nagel G.mbH&Co
Purpose of sampling	Batch testing
Date of sampling	

Method

TT	
Users or maintenance	Users
Way in which building	In depot on the grounds of E.P. Shipping & Trading
material is available	B.V., at left behind the gate Quebecstraat no. 5 at
	Rotterdam
Equipment	Shovel, coal scoop, measuring bucket, measuring tape,
	photo, etc.
Quantity	4000 tons
Picks to be taken	12
Samples to compose	2
Grain size	0/16
Pick size	3 kg
Sample size	18 kg
Safety	n.a.

Execution

Sample coding	Sample A and B
Sample packing	Plastic bags
Transport	Automobile
Delivery	Directly to Iwaco laboratory (not sampling as soil)

Remark

Also sampling of Yali pumice as being clean soil, therefor 100 picks (50 per sample) pick size 0.14 to join, sampling with "edelman" brace if possible.

Approval

Initials project leader	
Initials sampler	

Sampling of non-shaped building materials from static batches in behalf of batch testing VKB-A-202

Sampling schedule

General

Ochciai	
Project	Examination Yali-pumices
Number	
Project leader	
Phone	31 (0)30 220 78 09
Sampler	
Client	
Contact	
Contact on location	
Competent authority	n.a.
Contact	n.a.
Building material	pumices
Producer	Nagel G.mbH&Co
Purpose of sampling	Batch testing
Date of sampling	:

Execution

Size depot L - W - H (m)	42 x 21 x 7,0 en 13 x 22 x 3,5 continuous
Method	by hand and shovel
Pick size	3 kg
Sample size	18 kg
Zero-point	see drawing

Coordinates/mixed sample arrangement

Pick no.	Y-coord.	X-coord.	Z-coord.	A/B	remarks
1	1,0	6,5	3,4	В	
2	8,5	10,5	1,2	A	1
3	26,5	31,0	2,3	A	2
4	26,5	41,5	2,2	A	
5	30,5	19,0	3,3	В	
6	45,0	20,0	5,5	В	
7	36,5	8,0	6,8	В	
8	37,0	14,0	6,5	В	
9	37,5	11,5	6,8	В	
10	39,0	17,0	6,8	A	
11	41,0	35,5	4,7	A	
12	42,0	12,0	6,8	В	

Execution deviations from sampling schedule

All samples are taken by hand at which at the points (1) and (2) a part of the above laying pumices is removed. At point (1) also the x-coordinate is adjusted 2.5 meters. Also the Z-coordinate is adjusted at most picks because it was not possible to turnover the depot. The depot is turned over a few times from the extraction on. Besides of this sampling as building material a sampling as "soil" is executed.

Handing over of samples

Initials laboratory	date

Appendix 3: Analysis results building material

Grontmij-De Weger att. Mr. S. van den Berg PB 203 3730 AE DE BILT THE NETHERLANDS

Place and date

Waddinxveen, 5 September 2000

Refers to

AP04 analysis of Yali-pumices (batch testing) 2288621-4

Dear Mr. Van den Berg,

Herewith you find the results of the laboratory examination.

The examination is executed in conformity with the regulations as set in AP04, ACCREDITATION PROGRAMME "Building Materials Decree" of June 1998.

If you have any questions about these results, you may contact the chief of analysis group Anorganic Analysis & Acceptation, phone (0031) 10 286 55 88.

If you are of the opinion that the examination and/or the report is not executed in conformity with the made agreements, you may contact with undersigned, phone 010 286 55 35.

We have confidence to have informed you as wished,

Sincerely yours, IWACO B.V.

J. Warbout Manager Environment Laboratory

Author: IWACO Environment Laboratory Rotterdam

- Member ONRI
- Qualified by Sterlab
- Bouwstoffenbesluit

Analysis results base material

Analysis results	AP04 I	Building m	aterial(s)			
Sample code:		1 Yali-bims 1 2 Yali-bims 2				
Sample code				1	2	
Parameter			report limit			
Sample date				08/05/10	08/05/10	
Leaching examination Q Column test				Х	х	
Physical chemical inve Q dry material Fenol-index (NEN 667		n % (w/w) mg/kgds	,	81,6 0,013	83,4 0,046	
Analyses on mineral of Q Min. olie (GC) AP-C Q fraction C10-C14 (A Q fraction C20-C26 (A Q fraction C26-C34 (A Q fraction C34-C40 (A	14 1P04) 1P04) 1P04)	ng/kgds % % % %		< 20 < 5,0 < 5,0 < 5,0 < 5,0	< 20 < 5,0 < 5,0 < 5,0 < 5,0	
Polycyclic Aromatic H Q * PAK 10 van Vrom Q Naftaleen * Q Fenanthreen Q Anthraceen Q Fluorantheen Q Chryseen *+ Q Benzo(a)anthraceen Q Benzo(a)pyreen *+ Q Benzo(k)fluoranthee Q Indeno(1,2,3-c,d)pyr Q Benzo(ghi)peryleen * Q + PAK 7 van WGA	n *+ een*+	mg/kgds mg/kgds mg/kgds mg/kgds mg/kgds mg/kgds mg/kgds mg/kgds mg/kgds mg/kgds mg/kgds	0,010 0,010 0,010 0,010 0,010 0,010 0,010 0,010	0,21 <0,010 0,031 0,010 0,060 0,022 0,033 0,023 0,014 <0,010 0,016 0,17	<0,10 @) <0,010 <0,010 <0,010 0,014 <0,010 <0,010 <0,010 <0,010 <0,010 0,056 <0,010 0,070	

Analysis results base material

Analysis results AP04 Building material(s)

Sample code: 1 Yali-bims 1

2 Yali-bims 2

2 Yali				
Sample code			1	2
Parameter	unit	report limit		
Sample date			08/05/10	08/05/10
Halogenated hydrocarbons Q EOX (NEN 5735) Q 01,2,3-Trichloorbenzeen Q 01,2,4-Trichloorbenzeen Q 01,3,5-Trichloorbenzeen Q 1,2,3,4-Tetrachl.benzeen	mg/kgds mg/kgds mg/kgds mg/kgds mg/kgds	0,10 0,003 0,003 0,003 0,001	<0,10 <0,003 <0,003 <0,003 <0,001	<0,10 <0,003 <0,003 <0,003 <0,001
Q 1,2,3,5-+1,2,4,5-Te.Cl.B. Volatile Aromatic Hydrocart		0,001	<0,001	<0,001
Q BTEX (totaal) Q Benzeen Q Tolueen Q Ethylbenzeen Q Xylenen	mg/kgds mg/kgds mg/kgds mg/kgds mg/kgds	0,050 0,050 0,050 0,050 0,050	<0,20 @) <0,050 <0,050 <0,050 <0,050	<0,20 @) <0,050 <0,050 <0,050 <0,050
Polychlorinebiphenyls Q PCB (totaal) Q PCS no. 28 Q PCB no. 52 Q PCB no. 101 Q PCS no. 118 Q PCB no. 138 Q PCB no. 153 Q PCS no. 180	mg/kgds mg/kgds mg/kgds mg/kgds mg/kgds mg/kgds mg/kgds	0,002 0,002 0,001 0,001 0,001 0,001 0,001	<0,009 @) <0,002 <0,002 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001	<0,009 @) <0,002 <0,002 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001
Organochlorine pesticides Q OCB (total) Q Drins (total)	mg/kgds mg/kgds	- ×	<0,024 <0,005	<0,024 @) <0,005 @)

Descripton: AP04 analysis on Yali-bims (batch test) 2288621-4								
Analysis results base material								
Analysis results A	Analysis results AP04 Building material(s)							
		bims 1 bims 2						
Sample code				1	2			
Parameter			report limit					
Sample date				08/05/10	08/05/10			
Organochlorine pesticide	es (co	ntinued)						
HCH-verbindingen (total Q DDT/DDE/DDD (total Q DDT/DDE/DDD (total Q Pentachloorbenzeen Q Hexachloorbenzeen (FQ a-HCHQ B-HCHQ Q y-HCH (lindaan) Q HeptachloorQ AldrinQ IsodrinQ IsodrinQ is HeptachloorepoxidQ 2,4-DDEQ a-EndosulfanQ 4,4-DDEQ DieldrinQ EndrinQ 2,4-DDTQ 4,4-DDTQ 4,4-DDTQ 4,4-DDDQ Q 4,4-DDDQ Q 4,4-DDDQ Q 4,4-DDDQ Q Hexachloor-1,3 butadag cis-Chloordaan	tal) HCB) de	mg/kgds	0,001 0,001	< 0,003 @) < 0,008 @) < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001	< 0,008 @) < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001			
Q trans-Chloordaan Q trans-Heptachloorepo	xide	mg/kgds mg/kgds	0,001	< 0,001 < 0,001	< 0,001 < 0,001			
Organo-phosphorus pesticides)								

mg/kgds 0,010 < 0,010

< 0,010

Q Mevinphos

< 0,002

< 0,002

Descripton: AP04 analysis on Yali-bims (batch test) 2288621-4

Analysis results base material

Analysis results

AP04 Building material(s)

Sample code:

Q Terbutryn

1 Yali-bims 1

2 Yali-bims 2

Sample code 1 2

Parameter unit report limit
Sample date 08/05/10 08/05/10

Organochlorine pesticides (continued)
Q Chloorpyrifos-methyl mg/kgds 0,010 < 0,010 < 0,010

Organo nitrogen pesticides

mg/kgds 0,002

Descripton: AP04 analysis on Yati-bims (batch test) 2288621-4							
Analysis results base r	material						
Analysis results AP04 Building material(s)							
Sample code:		Yali-bims 1 2 Yali-bims 2					
Sample code	565			1		2	
Parameter			report limit				
Sample date				0	8/05/10	08/05/10	
Quantitative GCMS a			extraction (n		250		
Phosphorus pesticides							
Q Dichloorvos	1	ng/kgds	0,010	<	0,010	<0,010	
Q Dimethoaat	1	ng/kgds	0,010	<	0,010	<0,010	
Q Diazinon	1	ng/kgds	0,010	<	0,010	<0,010	
Q Disulfoton		ng/kgds	0,010	<	0,010	<0,010	
Q Parathion-methyl		ng/kgds	0,010	<	0,010	<0,010	
Q Malathion		ng/kgds	0,010		0,010	<0,010	
Q Chloorpyrifos-ethyl		ng/kgds	0,010		0,010	<0,010	
Q Fenthion		ng/kgds	0,010			<0,010	
Q Parathion-ethyl		ng/kgds	0,010		0,010	<0,010	
Q Bromophos-methyl		ng/kgds	0,010		0,010	<0,010	
Q Bromophos-ethyl		ng/kgds	0,010		0,010	<0,010	
Q OPB (som)	I	ng/kgds	-	<	0,13 @)	<0,13 @)	
Nitrogen pesticides							
Q Simazine	r	ng/kgds	0,004	<	0,004	<0,004	
Q Atrazine		ng/kgds			0,002	<0,002	
Q Propazine		ng/kgds	0,002		0,002	<0,002	
Q ONS (som)		ng/kgds	-		*	<0,010 @)	
ONB/OPB (som)		ng/kgds	-		0,14@)		

^{@)} Report limit is the sum of the detection limits of the components.

Calculation cumulative emission leaching test

At the calculation of the minimum cumulative emission the analysis results that are lower than the detection limit, are set at zero. At the calculation of the maximum cumulative emission, these analysis results are entered in the calculation as being the detection limit value.

Sample code:

1 Yali-bims 1

emission column test LIS= 10

Parameter	min. mg/kgds	max. mg/kgds
Physical chemical examin Q Bromide (HPLC) Q Chloride (HPLC) Q Sulfaat (HPLC) Q Fluoride free	1,22 269 51,2 0,810	1,22 +) 269 +) 51,2 +) 0,810 +)
Metals (AAS, AES) Q Antimoon (Hydride) Q Arseen Q Barium Q Cadmium Q Chroom Q Cobalt Q Koper Q Kwik Q Lood Q Molybdeen Q Nikkel Q Seleen (Hydride) Q Tin Q Vanadium Q Zink	0 0 0 0 0,0235 0 0 0 0 0 0	0,0090 +) 0,0200 +) 0,100 +) 0,0010 +) 0,0235 +) 0,0300 +) 0,0500 +) 0,0500 +) 0,0500 +) 0,0300 +) 0,0300 +) 0,0300 +) 0,0300 +) 0,0300 +) 0,0300 +) 0,0300 +) 0,0300 +)

⁺⁾ One or more percolates/extracts are not analysed

Calculation cumulative emission leaching test

At the calculation of the minimum cumulative emission the analysis results that are lower than the detection limit, are set at zero. At the calculation of the maximum cumulative emission, these analysis results are entered in the calculation as being the detection limit value.

Sample code:

2 Yali-bims 2

emission column test LIS= 10

	min.	max.
Parameter	mg/kgds	mg/kgds
Physical chemical exami	nation	
Q Bromide (HPLC)	0,290	0,290 +)
Q Chloride (HPLC)	254	254 +)
Q Sulfaat (HPLC)	38,8	38,8 +)
Q Fluoride free	0,881	0.881 +)
Metals (AAS, AES)		
Q Antimoon (Hydride)	0	0,0090 +)
Q Arseen	0	0,0200 +)
Q Barium	0	0,100 +)
Q Cadmium	0	0,0010 +)
Q Chroom	0,0202	0,0202 +)
Q Cobalt	0	0,0300 +)
Q Koper	0	0,0200 +)
Q Kwik	0	0,0003 +)
Q Lood	0	0,0501 +)
Q Molybdeen	0	0,0300 +)
Q Nikkel	0	0,0501 +)
Q Seleen (Hydride)	0	0,0090 +)
Q Tin	0	0,0300 +)
Q Vanadium	0	0,0200 +)
Q Zink	0	0,0501 +)

⁺⁾ One or more percolates/extracts are not analysed

Analysis results leaching percolates/extracts

Analysis results AP04 Building Material(s)

Sample code:

1.1 Extract L/S=1, Yali-bims 1

1.2 Extract L/S=10, Yali-bims 1

1.3 Mengextract L/5=10, Yali-bims 1

Sample code			1.1	1.2	1.3
Dorometer	mit	report limit			

Parameter	unit	report limit			
Sample date			10/05/10	10/05/10	10/05/10
Leaching examination Q Column test			X	х	x
Physical chemical invest Q Bromide (HPLC)	mg/l				0,12

Q Bromide (HPLC)	mg/I	0,020	0,12
Q Chloride (HPLC)	mg/l	0,	27
Q Sulfaat (HPLC)	mg/l	0,10	5,1
Q Fluoride free	mg/l	0,050	0,081

Q Dunaut (III DC)	1116/1	0,10	5,1
Q Fluoride free	mg/l	0,050	0,081
Metals (AAS, AES)			
Q Antimoon (Hydride)	$\mu g/l$	0,90	< 0,90
Q Arseen	$\mu g/l$	2,0	< 2,0
Q Barium	$\mu g/l$	10	< 10
Q Cadmium	$\mu g/l$	0,10	< 0,10
Q Chroom	$\mu g/l$	1,0	2,4
Q Cobalt	µg/l	3,0	< 3,0
Q Koper	$\mu g/l$	2,0	< 2,0
Q Kwik	µg/l	0,030	< 0,030
Q Lood	$\mu g/l$	5,0	< 5,0
Q Molybdeen	μg/l	1,0	< 3,0
Q Nikkel	$\mu g/l$	5,0	< 5,0
Q Seleen (Hydride)	$\mu g/l$	0,90	< 0,90
Q Tin	μg/l	3,0	< 3,0
Q Vanadium	$\mu g/l$	2,0	< 2,0
Q Zink	$\mu g/l$	5,0	< 5,0

Q ZIIIK	μg/I	3,0		
Leaching examination				
O pH (extract)		-	8,0	8.1

Descripton:

AP04 analysis on Yali-bims (batch test) 2288621-4

Analysis results leaching percolates/extracts

Analysis results AP04 Building Material(s)

Sample code:

1.1 Extract L/S=1, Yali-bims 1

1.2 Extract L/S=10, Yali-bims 1

1.3 Mengextract L/5=10, Yali-bims 1

Sample code

1.1

1.2

1.3

Parameter

unit report limit

Sample date

10/05/10 10/05/10 10/05/10

Leaching examination (continued)

Q Geleidbaarheid (extract) µS/cm 2,0 Q cumulatieve L/S

1030 0,99

61 10

10

AP04 analysis on Yali-bims (batch test) 2288621-4 Descripton:

Analysis results leaching percolates/extracts

Analysis results AP04 Building Material(s)

Leaching examination

Q pH (extract)

Sample code:	2.1 Extract L/S=1, Yali-bims 1
--------------	--------------------------------

2.2 Extract L/S=10, Yali-bims 1

2.2 Extract L/S=10, Yali-bims 1 2.3 Mengextract L/5=10, Yali-bims 1					
Sample code			1.1	1.2	1.3
Parameter	unit	report limit			
Sample date			10/05/10	10/05/10	10/05/10
Leaching examination					
Q Column test			X	X	Х
Physical chemical investi Q Bromide (HPLC)		0.020			0.020
Q Chloride (HPLC)	mg/l mg/l	0,020 0,10			0,029 25
Q Sulfaat (HPLC)	mg/l	0,10			3,9
Q Fluoride vrij	mg/l	0,050			0,088
Metals (AAS, AES)					
Q Antimoon (Hydride)	μg/l	0,90			< 0,90
Q Arseen	μg/l	2,0			< 2,0
Q Barium Q Cadmium	μg/l μg/l	10 0,10			< 10
Q Chroom	μg/l	1,0			< 0,10 2,0
Q Cobalt	μg/l	3,0			< 3,0
Q Koper	μg/l	2,0			< 2,0
Q Kwik	μg/l	0,030			< 0,030
Q Lood	µg/l	5,0			< 5,0
Q Molybdeen Q Nikkel	μg/l	1,0			< 3,0
Q Seleen (Hydride)	μg/l μg/l	5,0 0,90			< 5,0
Q Tin	μg/l	3,0			< 0,90 < 3,0
Q Vanadium	μg/l	2,0			< 2,0
Q Zink	μg/l	5,0			< 5,0

7,9

8,2

Analysis results leaching percolates/extracts

Analysis results AP04 Building Material(s)

Sample code:

2.1 Extract L/S=1, Yali-bims 1

2.2 Extract L/S=10, Yali-bims 1

2.3 Mengextract L/5=10, Yali-bims 1

Sample code

Sample date

1.1

1.2

1.3

Parameter unit report limit

10/05/10 10/05/10 10/05/10

Leaching examination (continued)

Q Geleidbaarheid (extract) µS/cm 2,0 1010 62

Q cumulatieve L/S - 0,98 10 10

Appendix 3:

Analysis results building material

Descripton: AP04 analysis on Yali-bims (batch test) 2288621-4

Sample receipt form

Sampling by

: Client

Samples submitted by

: Client

Accepted by

: Dept. Acceptation

Reference client

: 228M21-4

Expected end date

: 7/7/2000

Type of sample Number Preservation State of deli State of delivery

AP04 Building Material(s) 2

Not preserved

Cooled

STORAGE OF SAMPLES:

- Soil samples are saved during a period of 42 days at a temperature of 4 - 8 C°.
- Water samples are only saved in behalf of analyses on metals during 42 days at room temperature.
- If deviant sample storage is required (temperature and/or saving time), you are requested to contact the department Planning and Acceptation of the laboratory, phone 010 286 55 88.

Appendix 4: Analysis results "soil"

GRONTMIJ VERKEER & INFRA S. van den Berg Postbus 203 3730 AE DE BILT

Plaats en datum Hoogvliet, 17 july 2000

Dear Mr. Van den Berg,

Herewith we send you the analysis results of the laboratory investigation of the sample material as offered by you with the description as given with the sample specification.

These results are referring to:

Your project name:

Yali-pumices

Your project number:

2288621

Alcontrol report number:

0019128

This analysis report consists of: 4 pages of which 3 as appendix. Comprehensive information on the analysis methods as used by us you can find in our general information guide, issue 97-1. If you have questions and / or remarks in relation with these results, we request you to contact the Customer Services department. Only the multiplication of the whole report is allowed.

Trusting that with this information we are at your service,

sincerely yours,

W. van Wijk Chief Laboratory

GRONTMIJ VERKEER & INFRA

: 9/5/2000

S. van den Berg

Date of start

X02

rubble

Project name : Yali-bims Project number : 2288621 Date of receipt : 8/5/2000

Appendix 1 of 3

Report no: 0019128 Reporting date: 17/5/2000

Date of start , ;	312000		Reporting date. 17/3/2000
Analysis	Unit	X01	X02
dry material	weight-%	84.8	90.0
organic material			
loss due to burning	% of DM	4.2	4.1
8			
Grain size division			
lutum (bottom)	% of DM	2.4	5.4
(000000)	,001211	=::	
Metals			
arseen	mg/kgds	<4	<4
cadmium	mg/kgds	< 0.4	< 0.4
chroom	mg/kgds	<15	<15
koper	mg/kgds	6.5	<5
kwik	mg/kgds	< 0.05	< 0.05
lood	mg/kgds	<13	<13
nikkel	mg/kgds	6.0	9.5
zink	mg/kgds	8.2	9.2
	mg mg as	0.2	7. <u>2</u>
Polycyclische aromat	tische koolw	aterstoffen	
naftaleen	mg/kgds	<0.1	< 0.1
antraceen	mg/kgds	< 0.05	<0.05
fenantreen	mg/kgds	< 0.05	<0.05
fluoranteen	mg/kgds	< 0.05	<0.05
benzo(a)antraceen	mg/kgds	< 0.05	<0.05
chryseen	mg/kgds	< 0.05	<0.05
penzo(a)pyreen	mg/kgds	<0.05	<0.05
penza(ghi)peryleen	mg/kgds	<0.05	<0.05
penzo(k)fluoranteen		< 0.05	<0.05
ndeno(1,2,3-cd)	mg/kgds	0.03	10.03
oyreen	mg/kgds	< 0.05	< 0.05
dyreen	mg/kgds	10.05	-0.03
Eox	mg/kgds	<0.1	0.12
DOX	mg/kgas	-0.1	0.12
Minerale olie			
ractie C10 - C12	mg/kgds	<5	<5
ractie C12 - C22	mg/kgds	<5	<5
ractie C22 - C30	mg/kgds	<5	5
ractie C30 - C40	mg/kgds	<5	5
otaal olie C10-C40	mg/kgds	<20	<20
010 010 010	g/ Kgus	-20	-20
chloride	mg/kgds	540	580
	Bus	510	200
Code Type	of sample	Sample spec	rification
K01 rubbl			ole A Joo34347

Mixed aample B Joo34351

GRONTMIJ VERKEER & INFRA S. van den Berg

Project name : Yali-bim Project number : 2288621

: Yali-bims

Appendix 2 of 3

Date of receipt : 8/5/2000

Report no: 0019128

Date of start : 9/5/2000 Reporting date: 17/5/2000

Analysis	type of sample	relation with standard
dry material	rubble	conformable to NEN 5747
organic material	rubble	conformable to NEN 5754
(loss due to burnin	0,	
lutum (bottom)	rubble	Own method, pipette method with fast ineralisation, NEN 5753
arsenic	rubble	Own method, dissolution thinned aqua regia, NVN 5770, measuring conformable to NEN 6426 and NEN 7322
cadmium	rubble	Own method, dissolution thinned aqua regia, NVN 5770, measuring conformable to NEN 6426 and NEN 7322
chromium	rubble	Own method, dissolution thinned aqua regia, NVN 5770, measuring conformable to NEN 6426 and NEN 7322
copper	rubble	Own method, dissolution thinned aqua regia, NVN 5770, measuring conformable to NEN 6426 and NEN 7322
mercury	rubble	Own method, dissolution thinned aqua regia, NVN 5770, analysis based on o-NEN 5779
ead	rubble	Own method, dissolution thinned aqua regia, NVN 5770, measuring conformable to NEN 6426 and NEN 7322
nickel	rubble	Own method, dissolution thinned aqua regia, NVN 5770, measuring conformable to NEN 6426 and NEN 7322
zinc	rubble	Own method, dissolution thinned aqua regia, NVN 5770, measuring conformable to NEN 6426 and NEN 7322
EOX	rubble	Own method, acetone-hexane- extraction, analysis by way of micro-coulometer (NEN 5735)
hloride	rubble	Own method, segmented instead of contineous flow NEN 6651
PAK (total, 10)	rubble	Own method, acetone-SPE- extraction, analysis by way of HPLC-UV-FLU (NVN 5731)
oil (GC, incl. lean-up)	rubble	Own mehtod, acetone-hexane- extraction, clean-up, analysis by way of GC-FID (NEN 5733)

The analyses marked with * are not covered by the Sterlab recognition.

Appendix 4:

Analysis results "soil"

GRONTMIJ VERKEER & INFRA

S. van den Berg

Project name

: Yali-bims

Project number : 2288621 Date of receipt : 8/5/2000

Date of start : 9/5/2000

Appendix 3 of 3

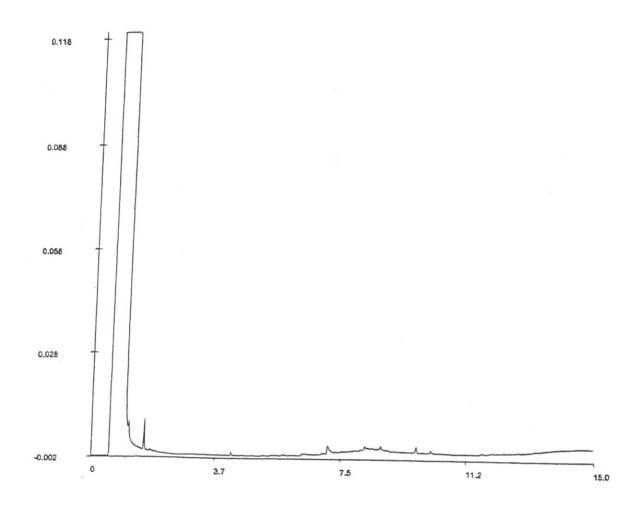
Report no: 0019128

Reporting date: 17/5/2000

Sample information

X001

j0034347


X002 j0034351

Author: IWACO Environment Laboratory Rotterdam

- Member ONRI
- Qualified by Sterlab
- Bouwstoffenbesluit

Oil GC - chromatogramme

Sample no: 191289 X002 Date analyse: 15/5/2000

For analysis results: see report

Characterisation of alkane path		Retention times of the even alkanes in minutes		
petrol	C9-C14	C10	1.7	
kerosene and paraffin oil	C10-C16	C12	2.9	
diesel oil	C10-C28	C22	6.5	
engine oil	C20-C36	C30	8.7	
fuel oil	C10-C36	C40	11.2	
humus	C28-C40			
kerosene and paraffin oil diesel oil engine oil fuel oil	C10-C16 C10-C28 C20-C36 C10-C36	C12 C22 C30	2.9 6.5 8.7	

Appendix 5: Sampling certificate

PROCES CERTIFICATE

It is hereby declared that the management system of:

Grontmij Verkeer & Infrastructuur b.v. Zeist, Nederland

has been evaluated and approved by Lloyd's Register Quality Assurance in accordance with the:

The review directive for the proces certificate sample inspection bouwstoffenbesluit (building materials decree)

The management system is applying to the following protocols:

VKB protocol 19:

sample inspection materials paving structures in

behalf of batch tests

VKB protocol 20:

sample inspection non-shaped building materials

from static batches in behalf of batch tests

VKB protocol 21:

sample inspection shaped building materials from

static batches in behalf of batch tests

Date of issue first certificate: 15 July 1999

Certificate no: 653918

Date of issue present certificate: 15 July 1999

Date of expiration: 31 July 2002

For LRQA (Rotterdam)

PROCES CERTIFICATE APPENDIX

Grontmij Verkeer & Infrastructuur b.v. Zeist, Nederland

Branches (if applying, these are mentioned here)

Date of issue first certificate: 15 July 1999

Certificate no: 653918

Date of issue present certificate: 15 July 1999

Date of expiration: 31 July 2002

Indications for the client:

- 1. The order commissioning client will in case of complaints address to the order receiving contractor (as mentioned on this certificate) and if necessary to LRQA Tld.
- 2. The order receiving contractor has to mention in his offer and report that the order for the sample inspection of soil and/or building materials is executed under certificate.
- 3. The way of sampling as this is executed under certificate, is complying with the rules as set in the Bouwstoffenbesluit (Building materials Decree).
- 4. The certified order receiving contractor is registered by way of this process certificate, at the Ministry of VROM, directorate Soil at The Hague.

Page 2 of 2